不确定数据在一些重要应用领域中是固有存在的,如传感器网络和移动物体追踪等.如何快速、方便、有效地从不确定数据库中发现潜在的、有价值的和人们感兴趣的信息变得越来越重要.首先,把传统的凝聚层次聚类算法(AHC)扩展到不确定的凝聚层次聚类算法(U-AHC),然后在聚类结果的基础上计算候选co-location模式的粗表实例,并对参与度小于最小参与度阈值的候选模式进行剪枝.接着展开其粗表实例并动态地实施剪枝,最后生成频繁的co-location模式.实验证明这个算法是正确的,而且效率较高.
不确定数据在一些重要应用领域中是固有存在的,如传感器网络和移动物体追踪等.如何快速、方便、有效地从不确定数据库中发现潜在的、有价值的和人们感兴趣的信息变得越来越重要.首先,把传统的凝聚层次聚类算法(AHC)扩展到不确定的凝聚层次聚类算法(U-AHC),然后在聚类结果的基础上计算候选co-location模式的粗表实例,并对参与度小于最小参与度阈值的候选模式进行剪枝.接着展开其粗表实例并动态地实施剪枝,最后生成频繁的co-location模式.实验证明这个算法是正确的,而且效率较高.