现在的纸调查在受到动人的负担的一个 sixparameter 基础上休息的有限 Timoshenko 横梁的动态反应。它是第一次, Galerkin 方法和它的集中为一根 Timoshenko 横梁的反应被学习,这由一个非线性的基础支持了。非线性的 Pasternak 基础被假定立方。因此, shear 的效果可变形的横梁和基础的 shear 变丑同时被考虑。Galerkin 方法为 discretizing 被利用强迫的颤动的非线性的部分微分管理方程。Timoshenko 横梁的动态回答经由第四顺序的 Runge-Kutta 方法被决定。而且,在一个复杂基础上休息的一根 Timoshenko 横梁的动态回答上的不同截断术语的效果被讨论。Timoshenko 的动态反应微笑的数字调查表演由有弹性的基础需要支持了超级高顺序的模式。而且,系统参数与相比决定 Galerkin 方法的集中的依赖。
The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the effects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial dif- ferential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge-Kutta method. Moreover, the effects of different truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.