位置:成果数据库 > 期刊 > 期刊详情页
约束优化问题的修正选择粒子群优化算法
  • ISSN号:1673-5196
  • 期刊名称:《兰州理工大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北方民族大学信息与系统科学研究所,宁夏银川750021
  • 相关基金:国家自然科学基金(60962006)
中文摘要:

提出一种求解约束优化问题的修正选择粒子群优化算法(RSPSO).在这个算法中,利用动态多阶段罚函数方法处理约束,并加入一种违反约束的修正选择策略,采用线性递减违反约束容忍度来引导粒子,即利用修正的可行基规则来更新个体极值和全局极值,指引粒子迅速飞向可行域;考虑到粒子群中每个粒子周围的局部信息对它未来飞行的影响,改进了基本粒子群优化的速度方程.数值结果表明,所提出的算法求解约束最优化问题具有较高的计算精度、较好的稳定性和较强的全局寻优能力.

英文摘要:

A revised selection particle swarm optimization(RSPSO) algorithm was presented for solving constrained optimization problems.In this algorithm a method of dynamic multi-stage penalty function was used to process the constraint,a revised selection strategy was supplemented for constraint violation,and use a linear decreasing the tolerance degree of constraint violation to guide the individual particle,i.e.use modified feasibility-based rule to update the individual extremum and global extremum to guide the individual particle fly to the feasible region as soon as possible.Taking into consideration the influence of local information around each particle's impact on its future fly,the optimized velocity equation of basic particle swarm was modified.Numerical simulation showed that the algorithm presented exhibited a higher computation accuracy,better stability,stronger ability for global optimization.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《兰州理工大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:甘肃省教委
  • 主办单位:兰州理工大学
  • 主编:李有堂
  • 地址:甘肃省兰州市兰工坪路287号
  • 邮编:730050
  • 邮箱:journal@lut.cn
  • 电话:0931-2756301
  • 国际标准刊号:ISSN:1673-5196
  • 国内统一刊号:ISSN:62-1081/T
  • 邮发代号:54-72
  • 获奖情况:
  • 甘肃高等校优秀学术期刊,全国优秀高校自然科学学报及教育部优秀科技期刊评...,第二届国家期刊奖百种重点期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6651