将局部寻优能力极强的人工Hopfield神经网络融合到差分进化算法中,给出了一个解一类0/1背包问题融合神经网络的差分进化算法。在该算法中差分进化算法当前全局最优个体为初始态激活神经网络,生成一个局部最优态,用这个局部最优态代替种群当前全局最优个体,增强了算法的局部寻优能力,通过数值试验表明该算法具有很好的效果。
A hybrid differential evolution algorithm was proposed, in which the Hopfield neural network has better local searching ability,combined with DE to solve a class of 0/1 knapsack problem. The current global optimal chromosome can activate the neural network and fly a better optimal state to replace it in the algorithm. The local optimal ability of the algorithm was strengthened. The numerical test shows that this algorithm is effective very well.