位置:成果数据库 > 期刊 > 期刊详情页
粒子群优化的速度方程改进与自适应变异策略
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]商洛学院数学与计算科学系,陕西商洛726000, [2]北方民族大学信息与系统科学研究所,银川750021
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60962006); 商洛学院科研基金资助(No.09SKY014 No.SKY011)
中文摘要:

对基本粒子群优化算法的速度方程进行了改进,减少了控制参数,引入随机调节因子,使得粒子的自我认知能力和社会认知能力在一定范围内随机产生,同时对个体最优粒子进行自适应随机变异,由此构造出一种改进的粒子群优化算法。数值结果表明新算法能够克服早熟收敛,具有更好的性能和全局搜索能力。

英文摘要:

An Improved Particle Swarm Optimization(IPSO) algorithm is proposed by improving the standard PSO's velocity equation.The new algorithm reduces the control parameters,introduces random adjustment factor,and generates the cognitive ability and social cognitive ability of the particle randomly in a certain range.By judging the local convergence,when PSO gets into the local convergence,IPSO can carry out stochastic mutation on individual optimal particle.The experimental results demonstrate that the new algorithm can overcome premature convergence,and has better global searching and performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887