运用ABAQUS显式算法模拟仿真轴向位移变量和内压变量对成形支管的高度、最大和最小壁厚的影响,分析壁厚分布情况,探究支管补料原理。模拟仿真结果表明:在一定位移变量和内压变量范围内,大位移量和高内压对增加支管高度的贡献率分别为330%和84.2%,对最大壁厚值的影响分别为39.4%和13.5%,对最小壁厚值的影响分别为5.1%和33.8%;双侧移动型成形工艺的支管壁厚呈现出两侧对称的4个峰值和3个谷值分布规律;移动推块和轴向挤压冲头的补料原理是将两端的管料推挤送进到支管根部实现补料过程。
The influences of axial displacement variables and internal pressure variables on the branch height,the maximum and minimum wall thickness of T-pipe were numerically simulated by ABAQUS explicit algorithm.Then,the wall thickness distribution was analyzed,and the branch feeding principle was explored.The simulation results show that the contribution rate of long displacement and high internal pressure to the increase of branch height is 330% and 84.2% respectively,the influence on the maximum wall thickness is 39.4%and 13.5% respectively,and the influence on the minimum wall thickness is 5.1% and 33.8% respectively.Furthermore,the branch wall thickness shows that both sides are symmetrical with four peaks and three valleys.The material feeding principle of moving block and axial extrusion punch is that two-end material is pushed into the branch root area to realize the material feeding process.