位置:成果数据库 > 期刊 > 期刊详情页
基于ASM的多特征融合驾驶员疲劳检测方法
  • ISSN号:1000-7105
  • 期刊名称:《电子测量与仪器学报》
  • 时间:0
  • 分类:TH701[机械工程—仪器科学与技术;机械工程—精密仪器及机械]
  • 作者机构:[1]湖南大学汽车车身先进设计制造国家重点实验室,长沙410082
  • 相关基金:国家自然科学基金(51475153)资助项目
中文摘要:

为了提高基于单一特征检测算法的准确率和鲁棒性,提出了一种基于多个特征的驾驶员疲劳融合检测算法。选取能够直接反映驾驶员疲劳程度的2个面部特征(眼睛和嘴巴)对驾驶员状态进行综合判断。针对驾驶员头部多角度变化时导致面部特征定位困难的问题,提出了基于主动形状模型(ASM)人脸特征定位算法,应用12个ASM特征标记点,准确定位出眼睛和嘴部特征。针对疲劳程度三级分类(清醒、疲劳及严重疲劳)难以确定的问题,提出了基于模糊推理系统的疲劳检测算法,根据人的经验,"智能"地判断疲劳程度,从而准确地量化疲劳这一模糊概念。实验结果对比表明,综合眼睛和嘴部信息,比采用单参数检测算法减少了误判的概率,具有较高的准确性和鲁棒性。

英文摘要:

In order to improve the accuracy and robustness of the driver fatigue detection algorithm based on a single feature, this paper proposes a multiple-feature-based driver fatigue fusion detection algorithm. Two facial features (eyes and mouth) that could directly reflect the fatigue are chosen to estimate the state of the driver synthetically. Aiming at the problem that the angle change of the driver~ head makes it difficult to locate the facial features, a fa- cial feature location algorithm based on active shape model (ASM) is proposed. Applying 12 feature mark points of ASM, the algorithm can locate the features of eyes and mouth exactly. Focusing on the problem that it is difficult to determine the three-level classification of driver' s fatigue level ( awaking, fatigue, severe fatigue) , we put forward a fatigue detection algorithm based on fuzzy inference system. The algorithm can estimate the level of fatigue smartly according to the experience of human, thus the fuzzy concept of fatigue can be quantified accurately. The comparison of experiment results shows that using the proposed algorithm the probability of misjudgment is lower than that using the single parameter detection algorithm, and the proposed algorithm has higher accuracy and robustness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子测量与仪器学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:彭喜元
  • 地址:北京市东城区北河沿大街79号2层
  • 邮编:100009
  • 邮箱:mi1985@emijournal.com
  • 电话:010-64044400
  • 国际标准刊号:ISSN:1000-7105
  • 国内统一刊号:ISSN:11-2488/TN
  • 邮发代号:80-403
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2014版)
  • 被引量:14380