设x:M—A n+1是一个局部严格凸超曲面,由Ω An上的凸函数Xn+1=f(x1,x2,…,xn)定义.作者研究了由△ρ=λ||ρ|| G2 /ρ所定义的相对极值超曲面解的问题,这里入是常值,△是局部严格凸超曲面上的关于Blaschke度量G的Laplacian算子.
Let x.M--A n+1 be a locally strongly convex hypersrface, given by a convex function xn+1 =f(x1 ,x2 ,… ,xn) defined in a convex domain Ω An. The purpose of this paper is to study the solution of the relative extremal hypersurface equation given by △ρ=λ||ρ|| G2 /ρ ,where X is a constant and A denotes the Laplaian operator with respect to the Blaschke metric G of the locally strongly convex hypersurface