作者讨论了相对极值超曲面方程Δρ+βn-2/2 ‖△↓ρ‖G^2/ρ= 0的解f的情况,并证明了相对极值超曲面的一个伯恩斯坦性质,这里M = { (x1, …,xn,f(x1, …,xn))|(x1, …,xn) ∈Ω}是浸入R^n + 1中的局部严格凸的超曲面,Δ为关于M上的Blaschke度量G的拉普拉斯算子.
The purpose of this paper is to study the solutions of the relative extremal hypersurface equation given by Δρ+βn-22ρG2ρ= 0,where Δ denotes the Laplacian with respect to the Blaschke metric G of the locally strongly convex hypersurface M = { (x1, …,xn,f(x1, …,xn))|(x1, …,xn) ∈Ω} immersed in Rn + 1 and a Bernstein property of relative extremal hypersurface is proved.