对DR(digtal radiography,数字辐射成像)图像进行分割是工业DR图像处理中一项重要内容。C-V算法对DR图像分割效果较好,但该算法计算量大,在工业应用中达不到实时处理要求。结合高性价比CUDA技术实现C-V算法对DR图像分割并行化,并采用共享内存技术、独立计算与合并计算结合的方法,较大地提高了C-V方法的计算效率。对实际工业DR图像分割实验结果显示,该方法加速比可达到32~44倍,表明使用CU-DA并行化C-V方法分割DR图像高效可行。
The segmentation of industrial DR image is very important to industrial image processing.C-V method has some advantage to industrial DR image segmentation.Due to its higher computing complexity,C-V method is rarely applied in a time-critical industrial environment.This paper presented an efficient parallel implementation of DR image segmentation by C-V method with CUDA,and used a method that separated data computing merged in corresponding thread by shared memory.Finally,compared the results to the current applications on image processing workstation,the implementation exhibited a speed-up of 32 to 44 times compared to a state-of-the-art CPU.