利用计算机代数系统解算等角纬度关于子午线弧长的表达式,并借助复变函数理论及双曲正切求和函数推导出不同中央经线的高斯投影变换公式;然后,以CGCS2000椭球为例,对高斯投影6°(或3°)带邻带换算精度进行了分析;取中央经线之差l12分别为±10°、±20°、±30°、±40°对不同中央经线的高斯投影坐标变换公式进行了应用范围分析及可靠性验证。结果表明:与传统的高斯投影换带公式相比,该推导公式具有更高的准确度及更宽的应用范围,在一定程度上丰富了高斯投影变换理论。
Conformal latitude expressed in terms of meridian length is calculated by means of computer algebra system.Based on the complex function theory and hyperbolic tangent sum function,transformation formulae between Gauss projections with different central meridians are derived.Afterwards,by taking CGCS2000 ellipsoid as an example,precision analysis of transformation between adjacent 6°(or 3°)zones is conducted.To analyze the application range and verify the reliability of these formulae,differences between the two central meridians are chosen.Compared with the traditional formulae used for transforming zones in Gauss projection,higher precision and wider applied range are shown in these transformation formulae,which could enrich the theories of Gauss projection transformation.