设A和B是两个(复)性代数,φ为A到B内的线性映射,n≥2为自然数,如果对任意的a1,a2,…,an∈A有φ(a1a2…an)=φ(a1)…φ(an),则称φ为A到B内的n-同态此外,如果φ是双射,则称φ为n-同构.本文主要研究了含单位元的(*-)Banach代数上的n-同态的自动连续性,并对C^*-代数上的* n-同构进行刻划.
Let A and B be two (complex) algebras. A linear map φ : A→ B is called n-homomorphism if (a1a2… an) =η(a1)…η(an) for each a1 ,a2 ,… ,an ∈A, where n≥2 an integer. Moreover,φ is called an n-isomorphism if φ is bijective. In this paper, the automatic continuity of n-homomorphisms on (involutive-)Banach algebras with unit is given and the involutive n-isomorphism on C^*-algebras is characterized.