采用硬脂酸对镁合金铈钒转化膜进行改性处理。利用扫描电镜、接触角测试仪、X射线能谱仪和红外光谱仪对改性膜层的微观结构、表面润湿性能以及化学组成进行分析,并通过防黏附和电化学实验研究膜层的自清洁行为以及耐腐蚀性能。结果表明:硬脂酸对铈钒转化膜的改性处理,不仅对转化膜的裂纹起到修补作用,并且通过接枝硬脂酸的疏水长链使改性膜层表面转化为超疏水性。8h常温浸泡后得到的改性膜层,表面接触角达154.6°,并表现出良好的自清洁性;耐腐蚀能力与原铈钒转化膜相比,膜层电阻Rcoat提高25倍,自腐蚀电流密度icorr降低2个数量级,其耐蚀性能得到显著提升。
The Ce-V conversion coating on magnesium alloy was modified by stearic acid (SA). Scanning electronic microscope (SEM), contact angle measurement, energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectrometer (FTIR) were adopted to study the microstructure, surface wettability, and chemical composition of the modified coating. Self-cleaning behavior and corrosion resistance of the coating were investigated by anti-adhesion and electrochemical experiments, respectively. The results show that the SA modification treatment not only repairs the cracks of the conversion coating, but also renders a superhydrophobic surface by grafting the long alkyl chains onto the rough Ce-V conversion coating. After 8h of treatment at room temperature, the modified coating surface with a contact angle of 154.6° exhibits good self-cleaning property. The modified coating increases the corrosion resistance (Rcoat) by 25 times and decreases the corrosion current density (icorr) by 2 orders of magnitude compared to the Ce-V conversion coating. The modified coating significantly improves corrosion resistance.