位置:成果数据库 > 期刊 > 期刊详情页
基于禁忌搜索的贝叶斯网结构学习算法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京工业大学 多媒体与智能软件技术北京市重点实验室,北京100124
  • 相关基金:北京市自然科学基金资助项目(4102010).
中文摘要:

针对随机搜索机制学习算法参数设置较多的不足,提出了一种基于禁忌搜索的贝叶斯网结构学习算法.此算法首先利用加边、减边、逆向边3个算子产生当前解的邻域,然后结合禁忌表和蔑视准则以引导和限制搜索过程,2个步骤迭代进行,直至达到全局最优解或近似最优解.仿真实验表明,此算法不仅具有结构简单、参数少、易于实现的特点,而且求解质量也能得到保证.

英文摘要:

To solve the drawbacks of the random searching based algorithms for learning Bayesian networks, we introduced the Tabu search into Bayesian network structure learning problems, proposed a Tabu-search-based Bayesian network structure learning algorithm (TBN). First, the new algorithm generates the neighborhood solutions by add, subtract and reverse arc operators. And then, the Tabu list and aspiration criteria guide the search procedure corporately. After the iteration of the two steps above, the algorithm will finally obtain optimal or near optimal solutions. The experiment results on the benchmark data sets show that TBN has a simpler structure and faster speed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924