位置:成果数据库 > 期刊 > 期刊详情页
量子蚁群算法求解多任务联盟问题
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京工业大学计算机学院多媒体与智能软件技术北京市重点实验室,北京100124
  • 相关基金:国家自然科学基金重大资助项目(60496322);北京市自然科学基金资助项目(4102010).
中文摘要:

针对蚁群算法在求解多任务联盟问题(multi-task coalition problem,MTCP)时存在的求解精度不高、迭代次数多的不足,利用量子计算的并行性,提出了一种求解多任务联盟问题的量子蚁群算法.首先,利用量子叠加态给出了基于Agent的量子编码,使1个Agent能占据空间中的2个位置;其次,为使旋转角获得合适的大小和方向,提出了一种基于信息素的自适应修正旋转角调整策略;最后,通过对量子编码进行观测,给出了基于量子态的蚂蚁寻优策略.实验结果表明,与已有的算法相比,该算法不仅能获得更高质量的解,而且收敛速度也有显著的提高.

英文摘要:

With concentration on the defects of ant colony algorithm as not-high precision and much iteration existing in the algorithm of multi-task coalition problem (MTCP) , this dissertation utilized the characteristics of quantum computation simultaneously processing substantial quanta in parallel to put forward quantum ant colony algorithm on MTCP. First, it utilized quantum superposition states to give quantum code based on Agent, making each Agent occupy 2 positions in the space; Second, in order for the rotation angle to obtain proper size and direction, it posed the self-adaptive and corrective rotation angle adjusting strategy on the basis of pheromone; Finally, it gave ant algorithm-seeking strategy based on the quantum states by monitoring on the quantum code. Substantial simulation experiments show that, compared with existing algorithms, this one can not only obtain better algorithm, but also improve the convergence speed prominently.

同期刊论文项目
期刊论文 49 会议论文 47
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924