为了对输入的某用户中性表情的三维人脸合成出尽量接近该用户的、带所指定表情类型的三维人脸,提出一种三维人脸表情并行合成算法.使用基于主测地分析(PGA)和径向基函数(RBF)的学习方法建立人脸真实表情模型,并借助泊松方程变形实现表情的合成;由于采用GPU并行执行,因此能够有效地对三维人脸模型进行表情实时合成,且具有高度可并行计算的特性.在BU-3DFED数据库上的实验结果表明,使用GPU加速后,文中算法的执行速度是使用普通双核CPU执行速度的13倍,并达到近实时合成的性能.
In order to synthesize a realistic expression for people with their neutral face models,we propose a new parallel 3D facial expression synthesis method.We firstly build a realistic expression model by integrating the principal geodesic analysis(PGA) with radial basis function(RBF) method.Then a Poisson-based deformation method is used to synthesize realistic expressions.The proposed approach is very suitable for acceleration by GPU parallel programming.It can effectively synthesize realistic 3D facial expressions with high-resolution.The experimental result on the public BU-3DFED database demonstrates that the execution speed implemented using GPU is 13 times faster than using Dual-core CPU.It achieves near real-time synthesis performance.