在这份报纸,我们证明可颠倒的操作员 T ,它是一跳线性在可分离的 Hilbert 空间 H 上功能,能因素作为 T =美国,在 U 是单一的, S 属于宽度的地方--二 CSL 代数学 alg ( =MN )当巢 M 和 N 是可计算的巢时,巢 M 或 N 什么时候是一个可计算的巢,或 S ,属于 alg-1 。为巢的因式分解,我们获得那 T 因素作为 S DN-1 和 U 作为 N 单一的 T = 美国是一个可计算的巢。
In this paper, we show that the invertible operator T, which is a bounded linear functional on a separable Hilbert space H, could factor as T = US, where U is unitary and S belongs to width-two CSL algebra algφ (φ = M∨N) when nest M or N is a countable nest, or S belongs to algφ^-1 when nests M and N are countable nests. For the factorization of nest,we obtain that T factors as T = US where S ∈ DN^-1 and U is unitary as N be a countable nest.