位置:成果数据库 > 期刊 > 期刊详情页
一种基于多簇结构的高斯动态粒子群优化算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]东南大学计算机科学与工程学院,南京210096, [2]南京大学计算机软件新技术国家重点实验室,南京210093
  • 相关基金:国家自然科学基金资助项目(No.90412014)
中文摘要:

分析高斯动态粒子群优化算法(GDPSO)中新的种群产生方式的特点,针对传统粒子群优化算法中全局最优模型收敛速度快但易陷入局部最优、局部最优模型收敛速度较慢的缺点,提出一种新的粒子群信息共享方式——多簇结构.该算法在簇内部实现粒子间信息的高度共享,而在簇之间则通过松散的连接实现信息的传递,以协调GDPSO算法的勘探和开采能力.通过典型的Benchmark函数优化问题测试并分析经典拓扑以及多簇结构在GDPSO算法中的性能,仿真实验结果表明,采用特定多簇结构的GDPSO算法收敛速度和稳定性显著提高,同时全局搜索能力明显增强.

英文摘要:

The method of population generation in Gaussian dynamic particle swarm optimization algorithm (GDPSO) is analyzed detailedly. Aiming at the problem of premature convergence of Gbest version and the slow search speed of Lbest version in original particle swarm optimization, a novel neighborhood topology structure called multi-cluster structure is proposed. In the proposed population structure, particles in one cluster share the information with each other, and clusters exchange their experiences through loose connection between particles. Thus, neighborhood topology is designed to coordinate exploration and exploitation. GDPSO, with several population topologies including the multi-cluster structure, is tested on four benchmark functions which are commonly used in the evolutionary computation. Experimental results show that the GDPSO with the proposed neighborhood topology can significantly speed up the convergence and efficiently improve the global search ability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169