多溴联苯醚( PBDEs)属溴代阻燃剂,曾因其优良的阻燃性能而广泛应用于电子电器、石油化工和建材纺织等工业产品中。然而,随着大量生产和使用,PBDEs已成为大气、水体、土壤和生物体等多环境介质中普遍检出且极具生态风险的有机污染物。因此,开展微生物降解研究对于典型环境中PBDEs污染风险消除和污染修复,具有重要的科学意义。本文从PBDEs环境归趋行为及其暴露风险出发,综述了PBDEs微生物厌氧降解和好氧降解的最新研究动态,比较分析了两种降解过程的降解特性与影响因素,并针对微生物,尤其是好氧微生物降解机理,阐述了 bphA 或 etbA 功能基因及其编码酶对 PBDEs 好氧降解过程的调控作用,同时就PBDEs微生物高效降解菌种选育、降解机理等方面的研究趋势进行了展望。
Owing to the superior performance as brominated flame retardants, polybrominated diphenyl ethers ( PBDEs) have been widely used as the additives in many industrial products, such as electronic and electrical appliances, petroleum chemical complex, and building and textile materials. With massive production and extensive application, however, PBDEs generally characterized with great risks on ecological system are ubiquitously detected in various environmental matrices, including atmosphere, water, soil and bioorganism. For risk elimination and pollution remediation, it is therefore of scientific significance to investigate the microbial degradation of PBDEs in the environment. Besides the foremost presentation of environmental fate or behaviors and exposure risks, the latest progresses on the anaerobic and aerobic microbial degradation of PBDEs were reviewed in this paper. At the same time, the specificity and influential factors of both representative degradation processes were also comparatively analyzed. As regards the mechanism of microbial degradation, especially the aerobic microbial degradation of PBDEs, the mediative role of functional genes of bphA or etbA and the encoding enzymes in degradation pathways was carefully summarized. Finally, the future interesting study on many aspects, such as the selection and cultivation of PBDEs-degrading bacteria with high efficiency and the molecular mechanism of degradation was prospected as well.