研究关于函数的非齐次A-调和方程-divA(x,u,▽u)=B(x,u,▽u)在黎曼流形测地球上弱解的Caccioppoli估计,以及它的弱逆Hlder不等式。根据散度定理和Young不等式,得到非齐次A-调和方程-divA(x,u,▽u)=B(x,u,▽u)的非负解u在完备黎曼流形上的Caccioppoli估计;根据Caccioppoli估计以及Moser迭代等方法,得到非齐次A-调和方程-divA(x,u,▽u)=B(x,u,▽u)的非负解u在测地球B(r)上的弱逆Hlder不等式。
Abstract: The Caccioppoli estimates and weak reverse Holder inequalities for the weak solution to the non-homogeneous A-harmonic equation - divA (x, u, ▽ u) = B ( x, u, ▽ u) in a geodesic ball for Riemann manifolds are studied. Firstly, by using the divergence theorem and Young inequality, the Caccioppoli estimates about the nonnegative solutionuof the non-homogeneous A-harmonic equa- tion - divA (x, u, ▽ u) = B(x, u, ▽ u) on the complete Riemann manifold are obtained. Then, according to the previous Caccioppoli estimates and Moser iteration etc., the weak inverse Holder inequality about the nonnegative solution u of the nonhomogeneous A-harmonic equation - divA (x, u, ▽ u) =B(x,u, ▽ u)on a geodesic ball B(r) is given.