位置:成果数据库 > 期刊 > 期刊详情页
基于贝叶斯估计的神经信息流
  • ISSN号:0023-074X
  • 期刊名称:《科学通报》
  • 时间:0
  • 分类:O212.1[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]燕山大学电气工程学院网络控制和生物信息中心,秦皇岛066004
  • 相关基金:国家自然科学基金资助项目(批准号:60575012)
中文摘要:

判断神经网络之间的相互影响是一个重要的神经科学问题.目前已提出了多种成熟的方法计算神经网络之间的耦合强度,但是对于神经网络之间耦合方向(信息流)的研究还属于起步阶段.一般的香农熵计算方法仅仅利用了样本重复概率的统计信息,而贝叶斯估计则充分利用了整体先验知识和样本重复概率.基于最小平方误差的贝叶斯估计提出了一种新的基于信息论的相位耦合方向指数计算方法.经过集总参数神经网络模型所产生的仿真信号检验表明,提出的方法能够准确地判断两个系统间的耦合方向,并且减少了对数据长度的依赖性,使分析短时高噪的复杂生物信号成为可能.应用该新方法分析了癫痫病人临床信号,结果表明该方法能判断出癫痫发作时各区域之间的影响方向,并揭示了癫痫传播机制.

同期刊论文项目
期刊论文 14 会议论文 3 专利 3
同项目期刊论文
期刊信息
  • 《科学通报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院
  • 主编:周光召
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:csb@scichina.org
  • 电话:010-64036120 64012686
  • 国际标准刊号:ISSN:0023-074X
  • 国内统一刊号:ISSN:11-1784/N
  • 邮发代号:80-213
  • 获奖情况:
  • 首届国家期刊奖,中国期刊方阵“双高”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:81792