位置:成果数据库 > 期刊 > 期刊详情页
Solution to reinforcement learning problems with artificial potential field
  • ISSN号:0023-074X
  • 期刊名称:《科学通报》
  • 时间:0
  • 分类:TM91[电气工程—电力电子与电力传动]
  • 作者机构:[1]Institute of Mental Health, Xiangya School of Medicine, Central South University, Changsha 410011, China, [2]School of Computer and Communication, Changsha University of Science and Technology, Changsha 410076, China, [3]Department of Computer Engineering, Hunan College of Information, Changsha 410200, China
  • 相关基金:Foundation item: Projects(30270496, 60075019, 60575012) supported by the National Natural Science Foundation of China
中文摘要:

一个新奇方法被设计解决与人工的潜在的地学习问题的加强。第一,学习问题的加强被转移到由使用人工的潜在的地(APF ) 计划问题的一条路径,它是一个很适当的方法为学习问题的加强建模。第二,一个新 APF 算法被建议与一个虚拟水流动概念在潜在的地方法克服本地最小的问题。这个新方法的表演被作为关键说出的一个格子世界问题和门迷宫测试。试验性的结果证明在 45 试用以内,好、确定的政策在几乎所有模拟被发现。与 WIERING 需要 20 的学习 HQ 系统比较为稳定的答案的 000 试用,建议新方法能比学习 HQ 快速更加获得最佳、稳定的政策。因此,新方法简单、有效把一个最佳的答案给学习问题的加强。

英文摘要:

A novel method was designed to solve reinforcement learning problems with artificial potential field. Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF), which was a very appropriate method to model a reinforcement learning problem. Secondly, a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept. The performance of this new method was tested by a gridworld problem named as key and door maze. The experimental results show that within 45 trials, good and deterministic policies are found in almost all simulations. In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution, the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning. Therefore, the new method is simple and effective to give an optimal solution to the reinforcement learning problem.

同期刊论文项目
期刊论文 14 会议论文 3 专利 3
同项目期刊论文
期刊信息
  • 《科学通报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院
  • 主编:周光召
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:csb@scichina.org
  • 电话:010-64036120 64012686
  • 国际标准刊号:ISSN:0023-074X
  • 国内统一刊号:ISSN:11-1784/N
  • 邮发代号:80-213
  • 获奖情况:
  • 首届国家期刊奖,中国期刊方阵“双高”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:81792