位置:成果数据库 > 期刊 > 期刊详情页
基于项目集格及位图索引的频繁项目集发现算法
  • ISSN号:1000-6788
  • 期刊名称:《系统工程理论与实践》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]天津大学管理学院,天津300072
  • 相关基金:国家自然科学基金(70571057);新世纪优秀人才支持计划(NCET-05-0253)
中文摘要:

以格论及位图索引技术为基础给出了一个新的频繁项目集发现算法.1)该算法利用有向图进行一次性数据预处理,在预处理过程中将数据库预先存贮为每个结点都用一个域来记录其支持度的项目集格,从而把复杂的频繁项目集的发现问题转化为图搜索问题,提高了频繁项目集发现过程的效率.2)支持度计算是关联规则发现中I/O及计算开销都非常大,算法引入了位图索引技术,提高了项目集支持度的计算速度.存储完整位图需要较大空间,针对该问题算法对位图进行了分块管理并对其进行了有效的编码压缩;不仅可以有效地对原始位图进行有效压缩,另外也可以在较大程度上提高支持度的计算效率.最后,对算法进行了计算实验与分析.

英文摘要:

It is well known that the task of finding frequent itemsets is the key problem in association rules mining. A new algorithm based on the lattice theory and bitmap index for mining frequent itemsets is proposed. 1 ) The algorithm converts the original transaction database to an itemsets-lattice in the preprocessing, where each itemset vertex has a label to save its support. So the complicated task of mining frequent itemsets in the database can be changed to simpler ones of searching vertex in the lattice, which can speeds up greatly the mining process. 2) Support counting in the association rules mining requires a great I/O and computing cost. A bitmap index technique to speed up the counting process is employed. Saving the intact bitmap usually has a big space requirement. Herein each bit vector is partitioned into some blocks, and hence every bit block is encoded as a shorter symbol. Not only the original bitmap is impacted, but also the support counting efficiency is improved efficiently in this way. 3) Experimental and analytical results are presented in the end.

同期刊论文项目
期刊论文 34 会议论文 6 获奖 2
同项目期刊论文
期刊信息
  • 《系统工程理论与实践》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国系统工程学会
  • 主编:汪寿阳
  • 地址:北京市海淀区中关村东路55号
  • 邮编:100190
  • 邮箱:xtll@chinajournal.net.cn
  • 电话:010-82541407
  • 国际标准刊号:ISSN:1000-6788
  • 国内统一刊号:ISSN:11-2267/N
  • 邮发代号:2-305
  • 获奖情况:
  • 第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:56095