位置:成果数据库 > 期刊 > 期刊详情页
基于三阶段RBFNN学习算法的复杂样本分类研究
  • ISSN号:1001-506X
  • 期刊名称:系统工程与电子技术
  • 时间:0
  • 页码:114-118
  • 语言:中文
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]天津大学管理学院,天津300072
  • 相关基金:国家自然科学基金资助课题(70171002).
  • 相关项目:协同进化算法及应用
中文摘要:

以提高径向基函数神经网(radial basis function neural network,RBFNN)的分类能力为出发点,把衰减半径聚类的思想与误差平方和准则结合起来,提出了RBFNN三阶段学习算法。该算法先利用动态衰减半径聚类确定隐节点的初始结构,再由误差平方和准则进行中心点微调,并用类内类间距确定径基宽度,最后采用伪逆法训练隐层与输出层间的连接权重。给出了算法的具体步骤,并通过Iris和WINES数据集的仿真实验,证明该算法确实具有较强的分类能力。

英文摘要:

To improve radial basis function neural network (RBFNN) classification ability, a three-phase RBFNN learning algorithm is proposed. Firstly, the initial hidden structure of the network is determined by dynamic decayed radius clustering algorithm. Then the hidden centers are modified by the sum squared error (SSE) rule, and the radius widths are calculated with the within-cluster and between-cluster distances. Finally the pseudo-inverse algorithm is utilized to train the weights between the hidden layer and the output layer. The experiments are implemented on Iris and Wines datasets, which shows that the proposed RBFNN training algorithm has a higher classification ability compared with the conventional methods.

同期刊论文项目
期刊论文 34 会议论文 6 获奖 2
同项目期刊论文
期刊信息
  • 《系统工程与电子技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会
  • 主编:施荣
  • 地址:北京142信箱32分箱
  • 邮编:100854
  • 邮箱:xtgcydzjs@126.com
  • 电话:010-68388406
  • 国际标准刊号:ISSN:1001-506X
  • 国内统一刊号:ISSN:11-2422/TN
  • 邮发代号:82-269
  • 获奖情况:
  • 全国中文核心期刊,全国优秀科技期刊,中国科技论文统计用刊,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34341