考察耦合抛物方程组:{ut=Δu+|x|^mu^p1v^q1,(x,t)∈R^N×(0,T) vt=Δv+|x|^nu^p2v^q2,(x,t)∈R^N×(0,T) u(x,0)=u0(x) x∈R^N v(x,0)=v0(x) x∈RN得到了:当δ≠0,max{α,β}〉N/2时,方程组所有正解的都是爆破的,当δ≠0,max{α,β}〈N/2时,则对小初值存在整体解,对充分大的初值所有正解都是爆破的,得到了该方程组的爆破临界指标,这里δ、α、β在文中给出。
The following coupled parabolic systems {ut=Δu+|x|^mu^p1v^q1,(x,t)∈R^N×(0,T) vt=Δv+|x|^nu^p2v^q2,(x,t)∈R^N×(0,T) u(x,0)=u0(x) x∈R^N v(x,0)=v0(x) x∈RN are considered. If δ≠0,max {α,β}〈N/2, all nonnegative positive solutions will blow up in infinite time;while {α,β}〈N/2,there will exist global solution if the initial data U0 (x),v0 (x) are small enough and all non-negative positive solutions will blow up in infinite time if the initial data u0 (x),v0 (x) are large enough,here,δ、α、β is defined as in context.