以玉米间作豌豆为研究对象,在隔根和不同灌水水平下,研究了根间作用和水分对间作豌豆根瘤数及根瘤重的影响,分析了根瘤数和根瘤重与豌豆产量的相关关系,以期为干旱条件下提高间作豆科的结瘤固氮能力提供理论依据。结果表明:1)与玉米间作不利于豌豆根瘤的形成,单作豌豆根瘤数较未隔根、部分隔根和完全隔根间作豌豆的根瘤数分别高16.0%-17.8%、26.2%-59.5%和37.9%-69.9%,根瘤重分别高26.9%-49.9%、129.2%-155.2%和170.6%-136.9%。2)间作群体内,充分的根间作用有利于增加豌豆的根瘤数和根瘤重,未隔根与完全隔根间作豌豆相比,其根瘤数和根瘤重分别高18.8%-45.6%和58.6%-124.9%。3)增加灌水有利于增加豌豆的根瘤数和根瘤重,但间作加剧了干旱对豌豆结瘤数的不利影响。4)间作具有显著提高豌豆产量的优势,未隔根、部分隔根和完全隔根间作豌豆的产量较单作豌豆分别提高了22.6%-30.8%、19.0%-24.5%和6.6%-14.0%,灌水量越大、根间作用越充分,间作豌豆增产越高。5)间作豌豆的产量与根瘤数、根瘤重呈显著的二次曲线相关,保持适量根瘤数是获取间作豌豆高产的可行途径之一。
In this study, a field experiment was carried out in a maize-pea intercropping system with three irrigation levels (high, medium and low) and three root partition patterns (no barrier, partly separated with nylon and completely separated with plastic film) to investigate the effect of root interspecific interaction and soil moisture on nodulation characteristics of peas, and to determine the relationship between the nodulation and the yield of peas. The purpose of the investigation is to provide a new scientific basis for improving the legume nodulation and nitrogen fixation capacity in a drought stress environment. The results showed that the intercropped maize significantly inhibited the nodulation of peas, compared with the mono-cropped peas. The nodule numbers of the intercropped peas with no root barrier, roots partly partitioned and completely partitioned were decreased by 16.0%-17.8%, 26.2%-59.5% and 37.9%-69.9%, respectively, while the nodule weights of the intercropped peas were 26.9%-49.9%, 129.2%-155.2% and 170.6%-136.9% lower than those of the mono-cropped peas, respectively. In intercmpping systems, sufficient root interaction favored the improvement of the nodule number and weight of peas. The nodule number of peas with no root barrier was 18.8%-45.6% higher than that with root completely partitioned and the nodule weight improved by 58.6%-124.9%. Increasing irrigation water amount improved the nodule number and weight of peas, whilst intercropping aggravated the negative influence of drought stress on the nodulation of peas. The intercroppcd peas showed a significant yield increase compared with the mono-cropped peas; sufficient irrigation and root interaction were beneficial to increase the yield of intercropped peas. The relationships of the yield of peas with the nodule number and the nodule weight of peas were described by a quadratic curve, implying that keeping a moderate nodule number is a practical way to improve the yield of pea.