为提高铝合金薄板激光切割质量,对切割去除熔化物进行了收集、观察及测量研究。在Nd:YAG脉冲激光切割模式下,采用不同气熔比0.1898,0.2798,0.3708和0.6519,对0.85mm厚的1000系铝合金薄板进行切割试验。试验通过超景深三维显微镜对收集的去除熔化物形状和尺寸进行观测研究。结果表明,去除熔化物颗粒由球形颗粒和蝌蚪形颗粒两种颗粒组成,其中球形颗粒平均尺寸在71~123μm之间;高气熔比切割去除熔化物主要呈球形,颗粒尺寸较小,切割质量较好;低气熔比下熔化物主要是蝌蚪形,其中呈现的球形颗粒尺寸较大,切割质量较差。试验最终在辅助气压0.6MPa高气熔比0.6519下获得了较高质量的切口。研究结果深化了铝合金激光切割的机理认识,有效提高了铝合金薄板的激光切割质量。
To improve the quality of laser cutting in aluminum alloy sheet, the collected melt is observed and measured. Laser cutting of 1000 series aluminum alloy sheets, with 0.85mm thickness, is carried out on a Nd: YAG pulsed laser machine under the different vapor-melt ratios of 0. 1898, 0. 2798, 0. 3708 and 0. 6519. In experiments the shape and size of collected removal are analyzed by a 3-D microscope. The melt is found to be tadpole-shape particles and spherical particles ranging of 71--123 μm in average diameter. The results show the collected particles are formed spherical at the high vapor-melt ratio and small in average diameter with good cutting quality. In contrast, at the low vapor-melt ratio the form is mainly tadpole-shape and the existence of big spherical particles of which with poor cutting quality. Finally, under the condition of gas pressure of 0.6 MPa and high vapor-melt ratio of 0. 6519, the researches achieve higher quality cut. The results help researchers to understand the characteristics of laser cutting in aluminum alloy and improve the laser cutting quality of aluminum alloy sheet effectively.