位置:成果数据库 > 期刊 > 期刊详情页
一种基于动态识别邻域的免疫网络分类算法及其性能分析
  • 期刊名称:电子与信息学报
  • 时间:2015
  • 页码:1167-1172
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]长沙理工大学计算机与通信工程学院,长沙410076, [2]中南大学信息科学与工程学院,长沙410083, [3]广州大学计算机科学与教育软件学院,广州510006
  • 相关基金:国家自然科学基金(61170199); 湖南省教育厅重点项目(11A004)资助课题
  • 相关项目:文法演化的模型理论
中文摘要:

针对传统免疫网络分类算法在记忆细胞确定上缺乏有效的指导,该文提出一种基于动态识别邻域的免疫网络分类算法。算法采用核函数表示机制来描述抗体-抗原之间的亲和度;利用抗原对构造动态识别邻域来指导抗体群体的进化,并选择邻域中距离对偶抗原最近的抗体为记忆细胞。算法被应用于多分类问题及高维分类问题来进行算法性能分析,同时,算法被应用于多个标准数据集的分类来评估算法的整体性能。分类结果表明该算法对于标准测试数据集有良好的分类性能,这说明基于动态识别邻域的训练方法能够有效地指导记忆细胞的生成,显著地改善分类器的性能。

英文摘要:

For lack of effective methods used by the traditional immune network algorithms to guide the memory cell determination, a dynamic recognition neighborhood based immune network classification algorithm is proposed. The algorithm uses a kernel function representation scheme to describe the antibody-antigen affinity, and constructs dynamic recognition neighborhood with using pair wise antigens to guide the antibody population evolution, in which the antibody nearest to the pairing antigen is determined as the memory cell. The algorithm is applied to multi-class problem and high dimensional classification problem to analyze the classification performance. Furthermore, the algorithm is used for many standard datasets classification to evaluate the algorithm overall performance. The results show that the proposed algorithm can achieve better classification performance, which indicates that the dynamic recognition neighborhood based training method is able to guide the memory cell generation effectively and improve the algorithm performance significantly.

同期刊论文项目
期刊论文 36 会议论文 7
同项目期刊论文