位置:成果数据库 > 期刊 > 期刊详情页
基于量子自适应粒子群优化径向基函数神经网络的网络流量预测
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国家数字交换系统工程技术研究中心,郑州450002
  • 相关基金:国家973计划项目(2012cB315900)和国家863计划项目(2011AA01A103)资助课题
中文摘要:

该文提出一种量子白适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RJBF)神经网络参数优化,建立了基于量子自适应粒子群优化RBF神经网络算法的网络流量预测模型。对真实网络流量的预测结果表明,该方法的收敛速度和预测精度均要优于传统RBF神经网络法、粒子群-RBF神经网络法、混合粒子群-RBF神经网络法和自适应粒子群-RBF神经网络法,并且预测效果不易受时间尺度变化的影响。

英文摘要:

A novel Quantum Adaptive Particle Swarm Optimization (QAPSO) method is proposed. In this algorithm, the position encoding of the particle is achieved with quantum bits, and the state of quantum bit is updated dynamically with particle trajectory information. Then the mutation operation is performed by quantum non-gate to avoid falling into local optimum, which increases the diversity of particles. Afterwards, the Radial Basis Function (RBF) neural network is trained with QAPSO to implement the optimization of RBF neural network parameters. The network traffic prediction model is established based on the Quantum Adaptive Particle Swarm Optimization and RBF Neural Network (QAPSO~RBFNN). Forecasting results on real network traffic demonstrate that the convergence speed of the proposed method is faster and prediction accuracy is more accurate than that of traditional RBF neural network, the Particle Swarm Optimization and RBFNN (PSO-RBFNN), Hybrid Particle Swarm Optimization and RBFNN (HPSO-RBFNN), Adaptive Particle Swarm Optimization and RBF Neural Network (APSO-RBFNN). Furthermore, the forecasting effect of this method is stable on different scales

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739