位置:成果数据库 > 期刊 > 期刊详情页
基于水平集的人脑MR图像分割方法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]太原科技大学计算机科学与技术学院,太原030024, [2]合肥工业大学机械工程学院,合肥230009
  • 相关基金:国家自然科学基金资助项目(51375132); 晋城市科技局资助项目(201501004-5); 太原科技大学研究生创新项目(20151030)
中文摘要:

为了更好地对解剖结构和形状复杂的非均匀分布人脑图像进行分割,在水平集Chan-Vese模型的基础上引入Otsu技术,给出了基于水平集的人脑磁共振(magnetic resonance,MR)图像分割方法.该方法利用Heaviside函数描述区域内图像分布信息,通过最大类间方差来反映区域间图像分布方差信息,2部分信息经融合后构建新的能量函数,以引导图像分割过程,最终得到所期望的人脑图像分割结果.采用2个数据集提供的人脑图像数据进行实验,结果表明:所提方法在相似性度量和正误率度量方面,与其他方法相比都有明显的优势,可以很好地实现人脑图像的分割.

英文摘要:

Traditional level set method is not suitable to non-uniformly distributed human brain segmentation with complex anatomic structures and shapes. Otsu method merge with level set Chan-Vese model,leading to human brain magnetic resonance( MR) image segmentation was presented based on Level Set method. The image information of intraregional distribution was constructed by Heaviside function,and the variance information of interregional distribution was built by maximum between-class variance. In the process of image segmentation,two parts of the information were integrated each other to guide energy function evolution,and the desired results of human brain segmentation was obtained.Experiments based on two datasets that provided human brain image show that the proposed approach has obvious advantages in similarity metrics and success,and lower error rate,can perfectly complete human brain segmentation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924