目的:制备20(S)-原人参二醇[20(S)-PPD]片,建立其含量测定及溶出度考察方法。方法:采用高效液相色谱法,C18色谱柱,乙腈-水(88∶12)为流动相,检测波长203 nm,流速1.0 mL.min-1,对样品中的20(S)-原人参二醇含量进行测定;并参照《中国药典》2010年版二部溶出度测定法第二法,以0.5%十二烷基硫酸钠水溶液为溶出介质,转速为100 r.min-1,对其进行体外溶出度考察,采用SAS软件非线性回归NLIN程序包中的Levenberg-Marquardt法进行迭代计算药物溶出度Weibull分布参数和特征溶出参数。结果:20(S)-原人参二醇的含量测定线性范围为20.4~1 020.0 mg.L-1(r=0.999 9),平均回收率为97.0%,RSD为1.99%;溶出度方法学考察,含量测定线性范围为10.0~80.0 mg.L-1(r=0.999 9),平均回收率为99.9%,RSD为2.13%,20 min即溶出完全;Weibull分布参数α位置参数为0.5 266,m形状参数为0.602 1,β尺度参数为2.387 2;特征参数Td为4.766 8 min,T50为2.834 7 min。结论:所建立的20(S)-原人参二醇片剂的含量测定和体外溶出度测定方法简便、准确、可靠,采用SAS系统可以简单快速的求解药物溶出度Weibull分布参数和特征参数。
Objective:To prep 20(S)-PPD(protopanaxdiol) tablets,and establish the determination and in-vitro evaluation methods.Method:The determination method was established by HPLC,using C18 liquid chromatography column at a detecting wavelength of 203 nm,and acetonitrile-water(88: 12) as the mobile phase with flowing rate of 1.0 mL.min-1.The dissolution behavior of 20(S)-PPD tablets was investigated by paddle method(second method listed in Volume II of Chinese Pharmacopeia),in the 0.5% SDS solution at the rotating rate of 100 r.min-1.The parameters of drug dissolution rate were treated with nonlinear regression by SAS software and iterated by Levenberg-Marquardt algorithm(LMA) to calculate Weibull ’s distribution parameters and characteristic dissolution parameters.Result:The linear range of HPLC determination was 20.4-1 020.0 mg.L-1(r= 0.999 9),with the average recovery rate 97.0%(RSD 1.99%).In the methodology study of dissolution,the tablets were completely dissolved in 20 min,with the linear range of 10.0-80.0 mg.L-1(r=0.999 9) and the average recovery rate 99.9%(RSD 2.13%).In Weibull’s distribution analysis,the location parameter(α) was 0.526 6,the shape parameter(m) 0.602 1 and the scale parameter(β) 2.387 2.In characteristic dissolution profile,Td was 4.766 8 min and T502.834 7 min.Conclusion:The determination and in vitro evaluation methods is simple,exactly and reliable.SAS system is a convenient and rapid instrument to calculate Weibull’s distribution parameters and characteristic dissolution parameters.