Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors’ coupling. As a result, it is difficult to study the modeling and safety simulation of this system. The dynamic model of the heavy-equipment airdrop is based on the Lagrange analytical mechanics, which has all the degrees of freedom and can accurately pinpoint the real-time coordinates and attitude of the carrier with its cargo. Unfavorable conditions accounted in the factors’ models, including aircraft malfunctions and adverse environments, are established from a man-machine-environment perspective. Subsequently, a virtual simulation system for the safety research of the multi-factor coupling heavy-equipment airdrop is developed through MATLAB/Simulink, C language and Flightgear software. To verify the veracity of the theory, the verification model is built based on dynamic software ADAMS. Finally, the emulation is put to the test with the input of realistic accident variables to ascertain its feasibility and validity of this method.
Heavy-equipment airdrop is a highly risky procedure that has a complicated system due to the secluded and complex nature of factors' coupling. As a result, it is difficult to study the modeling and safety simulation of this system. The dynamic model of the heavy-equipment airdrop is based on the Lagrange analytical mechanics, which has all the degrees of freedom and can accurately pinpoint the real-time coordinates and attitude of the carrier with its cargo. Unfavorable conditions accounted in the factors' models, including aircraft malfunctions and adverse environments, are established from a man-machine-environment perspective. Subsequently, a virtual simulation system for the safety research of the multi-factor coupling heavy-equipment airdrop is developed through MATLAB/Simulink, C language and Flightgear software. To verify the veracity of the theory, the verification model is built based on dynamic software ADAMS. Finally, the emulation is put to the test with the input of realistic accident variables to ascertain its feasibility and validity of this method.