威布尔分布是航空装备中较为典型的故障数据分布。为了验证航空装备故障数据在威布尔分布和随机右删失情形下其描述性统计量对客观贝叶斯可靠性评估的影响程度,设计多重马尔可夫链仿真算法,以删失比、样本量为主要因变量,对客观贝叶斯方法进行了敏感性分析。考虑在两参数威布尔分布情形下,以方差较大的伽马分布作为其无信息先验分布,在不同删失比、样本量的驱动下,对威布尔分布的尺度参数和形状参数进行点估计。以分布参数估计均值和变异系数来衡量其估计误差,并将平均故障间隔时间估计误差作为重要的评判依据。数值模拟结果表明,对于故障数据服从威布尔分布时,当样本量在10以上,或者删失比在0.5以下时,客观贝叶斯估计精度较好;当样本量为10以下时,该方法在删失比为0.5以上时估计偏差过大,应该探索更好的小子样条件下高删失比的可靠性评估方法。
Weilbull dis tribution is the typical failure dis tribution in aero equipment. In order to prove the effect of descriptive statistics on objective Bayesian reliability evaluation under random right censoring of aero e-quipment failure data, sensitivity analysis of the objective Bayesian method is proposed. A multiple Markov chain algorithm with the dependent variable of censoring rate and sample size is designed. The algorithm esti-mates the scale parameter and shape parameter of Weilbull distribution with the prior information of large vari-ance gamma distribution under the different censoring rates and sample sizes. The deviation of estimation can be judged and evaluated with mean time between failures, mean and variation factor of distribution parameters. The numerical results show that in Weilbull distribution, when the sample size is more than 10, or the censoring rate is less than 0. 5, the estimation accuracy of objective Bayesian is acceptable. Otherwise, a better reliability evaluation method is explored under small samples and high censoring rates.