位置:成果数据库 > 期刊 > 期刊详情页
微分流形及其应用的某些注释
  • ISSN号:1671-9476
  • 期刊名称:《周口师范学院学报》
  • 时间:0
  • 分类:O186.20[理学—数学;理学—基础数学]
  • 作者机构:[1]南京理工大学应用数学系,南京210094
  • 相关基金:Supported by a Grant-in-Aid for Scientific Research from Nanjing University of Science and Technology ( No. AB96137) and partially by the National Natural Science Foundation of China ( No. 10471063) Acknowledgment: The author would like to thank Professor X.P. Yang for his encouragement and guidance! This work was supported by the Foundation of Nanjing University of Science and Technology and the Natural Science Foundations of Province, China. The author would also like to express his thanks to Professor H. Z. Song for his guidance.
作者: 赵培标[1]
中文摘要:

基于黎曼流形及次黎曼流形在控制论、动力系统、规范场论等领域中的广泛应用的事实,本文拟对作为研究生课程的《微分流形及其应用》给出研习该课程的一般方法和思路.作为一个应用,用微分流形的语式给出Hamilton—Jacobi—Equations表示式.

英文摘要:

The studies of differential manifolds and their applications are motivated to the active fields with applications of Riemanian manifolds and Sub-Riemannian manifolds in Control Theory, Dynamics Theory, Gauge Fields, etc. We here investigate the ideas and approaches of differential manifolds as a course for postgraduates, and give out the thought of trains with studying this subject. As a conclusion, we also obtain the well known Hamilton-Jacobi-Equations in differential manifold languages.

同期刊论文项目
期刊论文 18 会议论文 4
同项目期刊论文
期刊信息
  • 《周口师范学院学报》
  • 主管单位:河南省教育厅
  • 主办单位:周口师范学院
  • 主编:徐建立
  • 地址:河南省周口市川汇区文昌大道中段6号
  • 邮编:466001
  • 邮箱:
  • 电话:0394-8178181
  • 国际标准刊号:ISSN:1671-9476
  • 国内统一刊号:ISSN:41-1345/Z
  • 邮发代号:
  • 获奖情况:
  • 全国高专优秀学报二等奖,河南省高校优秀学报二等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),德国数学文摘,中国国家哲学社会科学学术期刊数据库
  • 被引量:3734