设Mn是R^n+1的n维C^∞超曲面,λ1,λ2,…,λn为M^n的主曲率.假设Mt^n为M^n的等参超曲面,且-↑λ1(t),-↑λ2(t),…,-↑λn(t)为Mt^n的主曲率.本文证得如下的结论:M^n为R^n+1中的等参超曲面当且仅当(nk)Ml(x,t)=∑-↑λ1(t)-↑λ2(t)…-↑λl(t)不依赖于参数t,其中Ml表示l-th平均曲率.
Let M^n be an n-dimensional C^∞ hyper-surfaces inR^n-1 , and λ1 ,λ2 ,… ,λn be the principal curvatures of M^n . Let {Mt^n } be the isoparametric hyper-surfaces of M^n (-ε 〈 t 〈ε) , and -↑λ1 (t) ,-↑λ2 (t), … ,-↑λn, (t) be the principal curvature of Mt^n . This paper obtains the following ; M^n is the isoparametric hypercurfaces in R^n+1 if and only if(n k) Ml(x,t) =∑-↑λ1 (t)-↑λ2 (t)…,-↑λl(t) are the functions depended only variable t. Where Ml denote the l-th mean curvature.