在 noncommutativespaces 的相同波色子的州向量的空间的结构被调查。为了维持 Bose 爱因斯坦统计,阶段空间变量的交换关系应该同时包括并列坐标的非交换性 andmomentum 动量非交换性,它导致一种使变形的 Heisenberg-Weyl 代数学。尽管在这个州向量的空格没有平常的号码表示,直角、完全的州向量的罐头的几个集合被导出它是变换 Hermitian 操作符的相应的对的普通特徵向量。作为这个州向量的空格的简单应用,二维的正规协调状态的一种明确的形式被构造,它的性质被讨论。
The structure of the state-vector space of identical bosons in noncommutative spaces is investigated. To maintain Bose-Einstein statistics the commutation relations of phase space variables should simultaneously include coordinate-coordinate non-commutativity and momentum-momentum non-commutativity, which leads to a kind of deformed Heisenberg-Weyl algebra. Although there is no ordinary number representation in this state-vector space, several set of orthogonal and complete state-vectors can be derived which are common eigenvectors of corresponding pairs of commuting Hermitian operators. As a simple application of this state-vector space, an explicit form of two-dimensional canonical coherent state is constructed and its properties are discussed.