用 bosonic 协调州的表示和我们为量 Hamiltonian H = ia 发现公式的尖动量的 Schwinger bosonic 操作员实现 ? iijU ? 为苏(2 ) 旋转 U 的 jlal,这样,我们进一步指定尖速度,在此是泡利不相容原理矩阵。不过是的旋转量看得见没有古典通讯,我们可以仍然作为 3 个 Euler 角度描绘的僵硬身体旋转模仿它,并且计算它的伪 classical 旋转一个一半的旋转分区功能。
Using the bosonic coherent state representation and the Schwinger bosonic operator realization of angular momentum we find the formula for the quantum Hamiltonian H =iaiUijUjl a1 for SU(2) rotation U, in this way we further specify the angular velocity w, iUU = (1/2)σ·ω, where σ is the Pauli matrix. Though the spin as a quantum observable has no classical correspondence, we may still mimic it as a rigid body rotation characterized by 3 Euler angles, and calculate its Pseudo-classical rotational partition function of spin one-half.