让 F 是在领域 D 的 holomorphic 功能的一个家庭, k 是一个积极整数,一, b (≠ 0 ) , c (≠ 0 ) 并且 d 是有限复杂数字。如果为每 f ∈ F,所有零 f -d 有复合至少 k, f~((k))=whenever f = 0,并且 f = c 每当时 f~((k))= b,那么在 D 的 Fis 正常。这结果扩大米兰达的著名规度标准并且由于陈毒牙,剧痛和徐改进一些结果。一些例子被提供证明我们的结果是锋利的。
Let F be a family of holomorphic functions in a domain D, k be a positive integer, a, b(≠0), c(≠0) and d be finite complex numbers. If, for each f∈F, all zeros of f-d have multiplicity at least k, f^(k) = a whenever f=0, and f=c whenever f^(k) = b, then F is normal in D. This result extends the well-known normality criterion of Miranda and improves some results due to Chen-Fang, Pang and Xu. Some examples are provided to show that our result is sharp.