位置:成果数据库 > 期刊 > 期刊详情页
完备格上模糊粗近似算子的代数结构
  • 期刊名称:模糊系统与数学
  • 时间:0
  • 页码:42-43
  • 语言:中文
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工程大学理学院,黑龙江哈尔滨150001, [2]哈尔滨工业大学数学系,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(10771043);哈尔滨工程大学军用水下智能机器人技术国防重点实验室基金资助项目(2008);黑龙江省普通高等学校青年学术骨干支持计划项目(2006);黑龙江省博士后科学研究基金资助项目(LBH-Q05047)
  • 相关项目:形态学连通性理论及在图像分割中的应用研究
中文摘要:

模糊粗集是粗集的模糊化。现有模糊粗集大多建立在t-范数、模糊(t-)相似关系以及对偶原理基础之上。本文将模糊知识(模糊数据)的属性值集[0,1]拓广到一般完备格,基于一般二元模糊关系、模糊合取算子以及模糊合取和模糊蕴涵间的“伴随”关系研究一类模糊粗近似算子。本文对一般模糊粗集的代数结构做了详尽的探讨,并研究了新的模糊粗集与经典粗集和模糊粗集之间的联系。结论表明:粗集的这种模糊化方法保持了Pawlak粗集的代数性质;所提出的模糊粗集是现有典型模糊粗集的一般化;而且,模糊粗近似的贴近度得以提高。

英文摘要:

Fuzzy rough set is a fuzzification of rough set with fuzzy logic. Existing typical fuzzy rough sets were defined on the basis of t-norms, fuzzy (t-)similarity relations, as well as the duality principle. This paper studies a class of fuzzy rough approximation operators based on a general binary fuzzy relation, a fuzzy conjunction operator, as well as the adjunction between the conjunction and a fuzzy implication operator by extending the value set [-0,1-] of attributes of fuzzy knowledge to a complete lattice. The algebraic structure of the generalized fuzzy rough sets and the relationship of the fuzzy rough sets with existing rough sets and with existing typical fuzzy rough sets are explored. Conclusions show that the fuzzification of rough sets preserves the algebraic properties of Pawlak rough sets. The proposed fuzzy rough sets can be regarded as the generalization of existing typical fuzzy rough sets. Moreover, the close degree of the generalized fuzzy rough approximations is enhanced.

同期刊论文项目
同项目期刊论文