位置:成果数据库 > 期刊 > 期刊详情页
A 3D pyramid spline element
  • ISSN号:0567-7718
  • 期刊名称:Acta Mechanica Sinica
  • 时间:2011.12.12
  • 页码:986-993
  • 分类:O172.2[理学—数学;理学—基础数学] TU311.4[建筑科学—结构工程]
  • 作者机构:[1]School of Mathematics and Quantitative Economics, Dongbei University of Finance and Economics, 116025 Dalian, China, [2]School of Mathematical Sciences,Dalian University of Technology,116024 Dalian, China, [3]Key Laboratory of Liaoning Province for Composite Structural Analysis of Aerocraft and Simulation, Shenyang Aerospace University, 110136 Shenyang, China, [4]State Key Laboratory for Structural Analysis of Industrial Equipment, Dalian University of Technology, 116024 Dalian, China
  • 相关基金:The project was supported by the National Natural Science Foundation of China (11001037, 11102037, 11072156) and the Fundamental Research Funds for the Central Universities of China (DUT 10ZD 112, DUT 10JS02).
  • 相关项目:基于多边形网格的异度样条研究
中文摘要:

在这份报纸,一个 13 节点金字塔花键元素被使用四面体体积坐标和 B 网方法导出,它在笛卡儿的坐标完成第二顺序完全性。一些适当例子被采用评估建议元素的表演。当网孔被弄歪时,数字结果证明花键元素特别与 isoparametric 易遇奇缘的运气元素 Q20 和它的退化金字塔元素 P13 相比有好一些的性能,并且它比得上 Lagrange 元素 Q27。这被表明了有限元素方法是的花键为开发高精确性元素的一个有效工具。

英文摘要:

In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate examples were employed to evaluate the performance of the proposed element.The numerical results show that the spline element has much better performance compared with the isoparametric serendipity element Q20 and its degenerate pyramid element P13 especially when mesh is distorted,and it is comparable to the Lagrange element Q27.It has been demonstrated that the spline finite element method is an efficient tool for developing high accuracy elements.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《力学学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国力学学会 中国科学院力学研究所
  • 主编:卢天健
  • 地址:北京市海淀区北四环西路15号
  • 邮编:100190
  • 邮箱:actams@cstam.org.cn
  • 电话:010-62536271
  • 国际标准刊号:ISSN:0567-7718
  • 国内统一刊号:ISSN:11-2063/O3
  • 邮发代号:2-703
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:352