位置:成果数据库 > 期刊 > 期刊详情页
Maxima and sum for discrete and continuous time Gaussian processes
  • ISSN号:1000-0917
  • 期刊名称:《数学进展》
  • 时间:0
  • 分类:O211.61[理学—概率论与数理统计;理学—数学] TN713[电子电信—电路与系统]
  • 作者机构:[1]School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China, [2]College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China
  • 相关基金:The authors would like to thank the referees for their careful reading and helpful comments that improved the quality of the paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11326175), the Natural Science Foundation of Zhejiang Province (Nos. LQ14A010012, LY15A010019), the Natural Science Foundation of 3iangsu Higher Education Institution of China (No. 14KJB110023), and the Research Foundation of SUST.
中文摘要:

我们在连续弱并且强烈依赖的静止 Gaussian 过程,在分离时间点取样的这个过程的最大值,和这个过程的部分和的最大值之中学习 asymptotic 关系。如果分离时间点的格子是足够地稀少的,如果格子点是 Pickands 格子或稠密的格子, Gaussian 进程弱依赖、 asymptotically 依赖,这二极端值和和是 asymptotically 独立的,这被显示出如果分离时间点的格子是足够地稀少的。

英文摘要:

We study the asymptotic relation among the maximum of continuous weakly and strongly dependent stationary Gaussian process, the maximum of this process sampled at discrete time points, and the partial sum of this process. It is shown that these two extreme values and the sum are asymptotically independent if the grid of the discrete time points is sufficiently sparse and the Gaussian process is weakly dependent, and asymptotically dependent if the grid points are Pickands grids or dense grids.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学进展》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学协术学会
  • 主办单位:中国数学会
  • 主编:丁伟岳
  • 地址:北京大学数学系数学进展编辑部
  • 邮编:100871
  • 邮箱:
  • 电话:
  • 国际标准刊号:ISSN:1000-0917
  • 国内统一刊号:ISSN:11-2312/O1
  • 邮发代号:2-503
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:3411