考虑一个分离时间的保险风险模型。在时期 i 以内, i 1, X < 潜水艇 class= “ a-plus-plus ” > i 和 Y < 潜水艇 class= “ a-plus-plus ” > i 分别地表示网保险损失和一个保险公司的随机的折扣因素。假定那 {(X < 潜水艇 class= “ a-plus-plus ” > i , Y < 潜水艇 class= “ a-plus-plus ” > i ), i 1 } 形成跟随普通 bivariate Sarmanov 分布的独立、相等分布式的随机的向量的一个序列。面对重尾巴的网保险损失,一个 asymptotic 公式为有限时间的毁灭概率被导出。
Consider a discrete-time insurance risk model. Within period i, i≥ 1, Xi and Yi denote the net insurance loss and the stochastic discount factor of an insurer, respectively. Assume that {(Xi, Yi), i≥1) form a sequence of independent and identically distributed random vectors following a common bivariate Sarmanov distribution. In the presence of heavy-tailed net insurance losses, an asymptotic formula is derived for the finite-time ruin probability.