为解决空间数据质量评价遇到用不确定语言且各属性指标权重不明的问题,引入Vague集理论对不确定语言进行科学量化,利用属性区分度来确定权重,用正理想方案距离进行空间数据质量评价。研究结果表明:基于Vague集和属性区分度的评价结果反映了评价者对空间数据质量信息认识的模糊性和不确定性,能正确确定各指标权重,评价结果更能反映实际空间数据质量,使评价结果增加客观性减少主观性,从而使评价结果更科学。本研究结果可为空间数据质量定性评价提供一种参考方法。
In order to solve uncertain linguistic scientific quantification and correct determination of indexweight, Vague set is adopted to quantity linguistic uncertainty, and attribute discrimination is used to determineweight,and distance of positive ideal solution is employed to carry out spatial data quality evaluation. The researchresults show that : it reflects fuzziness and uncertainty of spatial data quality information understanding,and can correctly determine weight of each index, evaluation results can more reflect actual spatial data quality; the evaluation results can increase objectivity and reduce subjectivity so as to make evaluation results scientific, based on Vague set and attribute discrimination. The results of this study can provide a reference methodto the spatial data quality evaluation.