位置:成果数据库 > 期刊 > 期刊详情页
一种基于似然极大的动态聚类方法及其应用
  • ISSN号:0496-3490
  • 期刊名称:《作物学报》
  • 时间:0
  • 分类:O212.1[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]扬州大学江苏省作物遗传生理重点实验室,江苏扬州225009
  • 相关基金:国家自然科学基金项目(30270724,30370758);教育部新世纪优秀人才支持计划项目.
中文摘要:

将传统的动态聚类分析和判别分析相结合,引出一种基于似然极大的动态聚类方法,该方法以EM算法实现的极大似然估计进行类参数估计,以相应的贝叶斯后验概率判别个体的归类。模拟研究表明,该方法通常既可无偏估计类参数,又可判别最佳分类个数。与重心法动态聚类和最小组内平方和法动态聚类相比,稳健性较高。同时通过提高判别标准,可以降低误判率。用Fisher的Iris试验数据验证了方法的可行性,并将之成功应用于一个水稻F2群体的个体的主基因基因型鉴别。

英文摘要:

Clustering analysis is to determine the intrinsic grouping in a set of unlabeled data. A cluster is a collection of objects which are similar between them and are dissimilar to the objects belonging to other clusters. However, the current clustering techniques have not addressed all the requirements adequately. For instance, dealing with large number of dimensions and large number of data can be problematic because of time complexity. The effectiveness of the distance-based clustering methods depends on the definition of distance ; if an obvious distance measure doesn' t exist we must define it, which is not always easy, especially in multi-dimensional spaces. In addition, the choice of the optimal number of clusters in practice is impossible. Thus, choosing the correct number of clusters and the best clustering method is still a question open to discussion, in order to solve these problems, in this paper, we introduced a maximum likelihood-based dynamic clustering method, which combined the conventional dynamic clustering and discrimination analysis. The parameters of different clusters were estimated by the maximum likelihood method implemented via expectation-maximization (EM) algorithm and the objects were classified by the Bayesian posterior probability. This classified idea could increase the posterior confidence of classified individuals. The results of simulation studies showed that the proposed method not only unbiasedly estimated the corresponding cluster parameters but also differentiated the optimum clustering numbers by Bayesian information criterion (BIC). Compared with the K-means method and the minimum square sum within groups (MinSSw) method, the proposed method was more robustness and had almost the same clustering accuracy as K-means and MinSSw methods. Moreover, the miselassified rate (MR) could be reduced by enhancing the discrimination criterion. However, the unclassified rate (UR) would be increased by enhancing the discrimination criterion. Thus, an eclectic discrimin

同期刊论文项目
同项目期刊论文
期刊信息
  • 《作物学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国作物学会 中国农业科学院作物科学研究所
  • 主编:万建民
  • 地址:北京海淀区中关村南大街12号中国农业科学院
  • 邮编:100081
  • 邮箱:zwxb301@caas.cn
  • 电话:010-82108548
  • 国际标准刊号:ISSN:0496-3490
  • 国内统一刊号:ISSN:11-1809/S
  • 邮发代号:82-336
  • 获奖情况:
  • 2002年-第三届中国科协优秀科技期刊二等奖,2002-2009年-百种中国杰出学术期刊,2004年获“全国优秀期刊一等奖”,2005年获第三届国家期刊奖提名奖,2009年评为“2008年度中国精品科技期刊”,2009年被评为“新中国60年有影响力的期刊”,2011年获"第二届中国出版政府奖期刊奖提名奖"
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:49369