让 Z/(p [e ]) 是整数残余戒指模 p [e ] 与 p 一个奇怪的素数;整数 e ≥ 3。为在 Z/ 上的一个序列(p [e ]) ,在各个能在 Z/(p) 上被认为是一个序列的地方,有唯一的 p-adic 分解, 0 ≤ i ≤ e 1。让 f (x) 是在 Z/ 上的一个原始多项式(p [e ]) ;G ′(f (x) , p [e ]) 所有原始序列的集合在 Z/ 上由 f (x) 产生了(p [e ]) 。为μ(x ) ∈ Z/(p)[x ] 与 deg (μ(x )) ≥ 2;ged (1 + deg (μ(x )) , p 1 )= 1,设定
Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, set φe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing map φe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed