位置:成果数据库 > 期刊 > 期刊详情页
钢轨表面缺陷图像自适应分割算法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]兰州交通大学自动化与电气工程学院,兰州730070, [2]兰州工业学院电子信息工程学院,兰州730050
  • 相关基金:国家自然科学基金资助项目(61663022,61461023); 甘肃省高原交通信息工程及控制重点实验室开放课题(20161105)
中文摘要:

针对钢轨表面缺陷提取时的灰度分布不均与杂散光干扰问题,在背景差分法的基础上提出了一种钢轨表面缺陷图像自适应分割算法.首先,通过统计钢轨图像中各行像素灰度特征,结合其均值与标准差分布曲线快速提取钢轨表面区域;然后,进行区域与边缘特征的均值窗口自适应选取;最后,根据均值模糊原理建立背景图像模型并进行图像差分,实现了钢轨表面缺陷分割.实验结果表明:提出的轨面提取算法快速、有效;钢轨表面缺陷自适应分割算法在凸显图像中缺陷部分的同时,有效减少了光照变化和反射不均的影响.该方法对测试图像的召回率和准确率分别达到了95.4%和81.3%.

英文摘要:

To solve the problem such as interference of stray light and uneven gray distribution when extracting defects from rail surface,an adaptive segmentation algorithm for rail surface defect image was proposed based on background subtraction. Firstly,through the statistics for pixel gray feature of each row in rail image,rail surface area was quickly located by combining the distribution curve of gray mean and standard deviation for each row. Secondly,the mean window was adaptively selected based on feature of region and edge. Finally,a background image model was set up based on the mean fuzzy principle,and the image subtraction operation was made,in which the segmentation of rail surface defects was achieved. Results show that the extraction method for rail surface area proposed in this paper is fast and effective,and the adaptive segmentation algorithm for rail surface defects can highlight the defects in the image and effectively reduce the effect of illumination change and uneven reflections. The recall and accuracy of the proposed method are 95. 4% and 81. 3% respectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924