对欧氏障碍空间最大空隙问题MAXG(Ω)进行了分析,并运用地图代数理论对其进行了阐述,利用距离变换和全形态图形Voronoi图生成并取其最大值点。实验表明,本文算法可无显著困难地扩展为三维与加权距离。
To obtain the maximum interspace of Euclidean-space with obstacles MAXG (Ω), a new method of map algebra is used to analysis. With distance-transforming and constructing the Voronoi diagram of holomorphism, the maxdistance point is got to resolve MAXG(Ω). The arithmetic and some experiment results are also given. It may be spreaded in the interest of three dimensions and power distance without remarkable difficultly.