位置:成果数据库 > 期刊 > 期刊详情页
基于KPCA和FMSD的人脸识别
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南昌航空大学软件学院,南昌330063
  • 相关基金:国家自然科学基金资助项目(60675022); 江西省自然科学基金资助项目(2008GZS0034); 航空科学基金资助项目(20085556017)
中文摘要:

针对核最大散度差(KMSD)方法在人脸识别中存在边缘类和次优性问题,提出一种基于核主成分分析(KPCA)与模糊最大散度差(FMSD)的人脸识别方法(KFMSD)。利用KPCA方法提取人脸的非线性结构特征,选取投影后类间散度大于类内散度的特征向量作为最优投影轴,采用FMSD方法,根据隶属度函数将样本的原始分布信息完全融入人脸的特征提取中,采用最近邻分类器进行分类识别。在ORL和YALE人脸库上的实验证明了KFMSD方法的有效性。

英文摘要:

Considering the outer classes and inferior problem in Kernel Maximum Scatter Difference(KMSD) method,a new method of face recognition based on Kernel Principal Component Analysis(KPCA) and Fuzzy Maximum Scatter Difference(FMSD) is developed.The KPCA can be benefit to develop the nonlinear structures features in faces.Selecting the eigenvectors that between-class scatter is greater than within-class scatter after projection as optimal projection axis.Distribution information of samples is represented with fuzzy membership degree in the FMSD.It uses the nearest neighbor classifier for face recognition.Experimental results on ORL and YALE face databases show the KFMSD is better than KMSD method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139