位置:成果数据库 > 期刊 > 期刊详情页
一种结合CV与GAC模型的物体轮廓提取方法
  • ISSN号:1000-2243
  • 期刊名称:《福州大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]福州大学数学与计算机科学学院,福建福州350116
  • 相关基金:国家自然科学基金资助项目(11071270)
作者: 林锦[1]
中文摘要:

提出一种结合CV模型和GAC模型的方法,通过CV模型中长度项的权值调整,得到图像的两类分割.在此基础上,定义图像新的梯度,让GAC模型在新的梯度值空间搜索,从而得到物体的外部轮廓.在真实彩色图像上的实验结果表明,本算法能够大大改善CV模型在提取目标轮廓时的过分割问题,对物体内部不进行分割,并大大减少物体外部零星的小区域,收敛到目标物体的外部闭合轮廓.

英文摘要:

In this paper a novel method combining CV model and GAC model is proposed to extractthe contours of the object. The method firstly adjusts the weight of the length in the CV model and getthe initial segmenting result. Then, a new gradient of the image is defined based on the initial segmen-ting result and introduced to the GAC model, which is used to extract the external contours of the ob-ject. Experimental results for real color images has shown that our method can greatly improve the per-formance of CV model for the over segmentation problem, and it also can converge to the externalclosed contuor of the object without segmenting the inner of the object and reducing the little scatteredregion outside the object.

同期刊论文项目
期刊论文 15 会议论文 10
同项目期刊论文
期刊信息
  • 《福州大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:福州大学
  • 主办单位:福州大学
  • 主编:杨黄浩
  • 地址:福建省福州市大学新区学园路2号
  • 邮编:350116
  • 邮箱:xb@fzu.edu.cn
  • 电话:0591-22865030 22865031
  • 国际标准刊号:ISSN:1000-2243
  • 国内统一刊号:ISSN:35-1117/N
  • 邮发代号:34-27
  • 获奖情况:
  • 全国高校优秀自然科学学报,华东地区优秀期刊,福建省优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8994