这篇论文论述混合平均 Reynolds 的 Navier 司烧(RANS ) 并且为在在 6:1 附近的攻击的高角度的分开的流动的 large-eddy-simulation (LES ) 方法延长球状体。在这个工作学习的 RANS/LES 混合方法基于 Spalart Allmaras ( S A )包括分开的旋涡模拟( DES ), Menter 的 k ω shear-stress-transport ( SST )和有弱非线性的旋涡粘性明确的表达的 k ω (威尔科克斯Durbin+,WD+)模型和 zonal-RANS/LES 方法基于 SST 和WD+模型。从到在核心流动区域的 LES 的墙附近的 RANS 的开关通过为带的混合方法混合功能的一个流动依赖者的实现是光滑的。所有混合方法被设计为依附的流动有一个 RANS 模式并且为分开的流动有 LES 行为。这篇论文的主要目的是使用混合方法因为高级雷纳兹数字在延长球状体附近分开了流动在高发生。有第四顺序的人工的粘性的一个第四顺序的中央计划被申请空间 differencing。充分含蓄更低上面对称 -- 有假时间亚重复的高斯 Seidel 作为时间的区别被拿。有可得到的大小的比较为速度的压力分发,皮肤磨擦,和侧面被执行,等等。对实验的合理同意,为格子和基本骚乱上的效果的财务当模特儿,为分离流动被获得。
This paper presents hybrid Reynolds-averaged Navier-Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid meth- ods studied in this work include the detached eddy simulation (DES) based on Spalart-Allmaras (S-A), Menter's k-ω shear-stress-transport (SST) and k-o9 with weakly nonlinear eddy viscosity formulation (Wilcox-Durbin+, WD+) models and the zonalANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower-upper symmetric-Gauss-Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows.